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Abstract. Right ventricular ejection fraction (RVEF) is an important
indicator of cardiac function and has a well-established prognostic value.
In scenarios where imaging modalities capable of directly assessing RVEF
are unavailable, deep learning (DL) might be used to infer RVEF from al-
ternative modalities, such as two-dimensional echocardiography. For the
implementation of such solutions, publicly available, dedicated datasets
are pivotal.
Accordingly, we introduce the RVENet dataset comprising 3,583 two-
dimensional apical four-chamber view echocardiographic videos of 831
patients. The ground truth RVEF values were calculated by medical
experts using three-dimensional echocardiography. We also implemented
benchmark DL models for two tasks: (i) the classification of RVEF as
normal or reduced and (ii) the prediction of the exact RVEF values. In
the classification task, the DL models were able to surpass the medical
experts’ performance. We hope that the publication of this dataset may
foster innovations targeting the accurate diagnosis of RV dysfunction.

Keywords: Echocardiography, Right ventricle, Right ventricular ejec-
tion fraction, Deep learning

1 Introduction

Echocardiography is an ultrasound-based imaging modality that aims to study
the physiology and pathophysiology of the heart. Important indicators that de-
scribe the cardiac pump function can be calculated based on the annotations
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of echocardiographic recordings. One of these indicators is the EF. This ratio
indicates the amount of blood pumped out by the examined ventricle during
its contraction. In other words, EF defines the normalized difference between
the end-diastolic volume (EDV) which is the largest volume during the cardiac
cycle, and the end-systolic volume (ESV) which is the smallest volume during
the cardiac cycle.

EF (%) =
EDV − ESV

EDV
∗ 100

Two-dimensional (2D) echocardiographic images acquired from standardized
echocardiographic views can be used to approximate left ventricular volumes,
and thus, the left ventricular ejection fraction (LVEF) with sufficient accuracy.
Due to the more complex three-dimensional (3D) shape of the RV (see Figure
1), there is no accurate and clinically used method for estimating RV ejection
fraction (RVEF) from 2D recordings [15]. Nevertheless, the availability of this
indicator in daily clinical practice would be highly desirable. RVEF can be cal-
culated using 3D echocardiography, which is validated against the gold-standard
cardiac magnetic resonance imaging; however, it requires additional hardware
and software resources along with significant human expertise to maximize its
accuracy and reproducibility [11].

Fig. 1: This figure depicts the left and right ventricles of a normal (left) and
a diseased heart (right), as well as the geometric differences between the two
ventricles. It can be seen that the estimation of the left ventricular volume from
a single 2D plane is feasible due to its regular shape. In contrast, the right
ventricle’s more complex shape requires 3D evaluation. RV - right ventricle, LV
- left ventricle, P - pulmonary valve, T - tricuspid valve
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In this work, we publish a dataset that contains 2D echocardiographic videos
from 831 patients suitable for RV function assessment. 3D recordings were also
collected from the same patients for ground truth generation (i.e., RVEF). We
assume that deep learning methods can find relevant patterns on the 2D record-
ings to detect RV dysfunction and to predict the exact value of RVEF.

To test our assumption, we used an off-the-shelf video classification model
and a custom spatiotemporal convolutional neural network for the classification
of reduced/normal RVEF and for the prediction of RVEF. RV function can be
classified as normal if the RVEF is equal or above 45%, and reduced if it is below
45%. Even if the prediction of RVEF seems to be a more comprehensive method,
the aforementioned binary classification is the most widely used evaluation in
clinical practice having a clear association with the risk of future adverse clinical
events [6, 10].

Our contributions can be summarized as follows:

– We publish a large-scale echocardiographic dataset for the assessment of
RV function. According to our knowledge, this is the first dedicated dataset
aiming RV evaluation. Its uniqueness lies in the calculation of the ground
truth RVEF which was done using 3D recordings.

– Baseline deep learning models were developed and applied to classify RV
reduced/normal EF and to predict the RVEF value. Based on our literature
review, there is no solution that solves the same clinical problem.

– We compared the models’ performance with two experienced medical doc-
tors’ performance (one from the center from which the dataset originates
and one external expert). This was a unique comparison, as the ground
truth values were created using another modality (3D echocardiography).

2 Related Work

2.1 Datasets

To the best of our knowledge, there is no dataset for RV function assessment.
Based on an exhaustive literature review the following open-source datasets for
the assessment of LV function were identified.

The first one called CETUS [3] which contains 45 3D echocardiogram record-
ings (each from a different patient). The dataset was collected from three dif-
ferent hospitals using different machines, and it was annotated (3D LV seg-
mentation) by three expert cardiologists based on a pre-defined protocol. The
main purpose of this dataset is to compare 3D segmentation algorithms, there-
fore different segmentation metrics (e.g. Dice similarity index and 3D Hausdorff
distance) are used for evaluation. To evaluate the clinical performance of the
methods they calculate mean absolute error (MAE) and means squared error
(MSE) for the ESV, EDV and LVEF values.

CAMUS represents another important dataset [7]. 500 2D echocardiogram
recordings (each from a different patient) were collected from a single hospital
for this data set. LV segmentation mask that was created by an experienced
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cardiologist (except in the test set where 2 other cardiologist were involved)
and LVEF values are provided for the recordings. The estimation of the LVEF
values based on the Simpson’s biplane method of discs [5]. The same measures
were applied for evaluation as in the CETUS dataset (except the 2D version of
segmentation metrics instead of 3D).

The third dataset is the EchoNet-Dynamic [13] which contains 10036 2D
echocardiogram recordings (each from a different patient). Each recording was
captured from apical-4-chamber view. LVEF, EDV and ESV measurements were
obtained by experienced cardiologists on the standard clinical workflow. The
original recordings were filtered based on image quality and resized to 112x112
gray-scale image sequences.

They also used MAE and MSE as well as R2 to evaluate the LVEF, EDV
and ESV predictions.

2.2 Methods

The assessment of cardiac functions using machine learning and particularly
deep learning algorithms is a commonly applied approach nowadays due to the
superior performance of these systems compared to traditional computer vision
algorithms. These methods can even surpass human performance in certain cases
[2][22][1].

Some of the earlier methods focused on individual frames to predict echocar-
diographic view, ventricular hypertrophy, EF, and other metrics. Madani et. al
implemented a method for view classification, which is usually the first step
before further analysis [9].

Another group of researchers developed a more complex system that identifies
the view, applies segmentation on the 2D recordings and predicts the LVEF as
well as one of 3 diagnostic classes [23].

Leclerc et. al used a more advanced encoder-decoder style segmentation net-
work on the CAMUS dataset to calculate the EDV and ESV and to predict the
LVEF using these values [7].

Application of anatomical atlas information as a segmentation constraint
was successfully applied by Oktay et al. to create a more accurate segmentation
method for LV segmentation and LVEF prediction [12].

In order to predict measures like EF that can be estimated only using multiple
frames, the key frames has to be selected manually for these methods.

More advanced methods use video input and spatiotemporal convolutional
networks to provide an end-to-end solution.

Shat et. al applied 3D convolutional layers along with optical flow to detect
temporal changes along the video and to predict post-operative RV failure [18].

The effect of temporally consistent segmentation has been investigated previ-
ously [4]. In this study, the authors used a custom convolutional layer to obtain
bi-directional motion fields. The motion detection was combined with the seg-
mentation results to obtain precise LV segmentation.
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Ouyang et al. [14] presented a two stage convnet applying atrous convolution
to first segment the LV, and then another stage of spatiotemporal convolutions
to predict the LVEF.

Compared to existing approaches, we proposed a single stage method that
aims to predict the RVEF directly from the input videos using satiotemporal con-
volutional networks. We assume that in contrast to segmentation based methods,
different regions of the input image can also contribute to the RVEF prediction,
and therefore this task is feasible.

3 Overview of the RVENet Dataset

3.1 Data Collection

To create the RVENet dataset, we retrospectively reviewed the transthoracic
echocardiographic examinations performed between November 2013 and March
2021 at the Heart and Vascular Center of Semmelweis University (Budapest,
Hungary). We aimed to identify those examinations that included one or more
2D apical four-chamber view echocardiographic videos and an electrocardiogram
(ECG)-gated full-volume 3D echocardiographic recording (with a minimum vol-
ume rate of 15 volumes/second, acquired from an RV-optimized apical view,
and reconstructed from four cardiac cycles) suitable for 3D RV analysis and
RVEF assessment. The 2D apical four-chamber view videos were exported as
Digital Imaging and Communications in Medicine (DICOM) files, whereas the
3D recordings were used for generating labels (see the detailed description of
data labeling in section 3.2). Protected health information was removed from
all exported DICOM files. 2D videos with (i) invalid heart rate or frame per
second (FPS) values in the DICOM tags, (ii) acquisition issues comprising but
not limited to severe translational motion, gain changes, depth changes, view
changes, sector position changes, (iii) duration shorter than one cardiac cycle,
or (iv) less than 20 frames per cardiac cycle were discarded. All transthoracic
echocardiographic examinations were performed by experienced echocardiogra-
phers using commercially available ultrasound scanners (Vivid E95 system, GE
Vingmed Ultrasound, Horten, Norway; iE33, EPIQ CVx, 7C, or 7G systems,
Philips, Best, The Netherlands).

3.2 Data Labeling

The exported 2D echocardiographic videos were reviewed by a single experi-
enced echocardiographer who (i) assessed the image quality using a 5-point Lik-
ert scale (1 - non-diagnostic, 2 - poor, 3 - moderate, 4 - good, 5 - excellent), (ii)
labeled them as either standard or RV-focused, (iii) determined LV/RV orienta-
tion (Mayo - RV on the right side and LV on the left side; Stanford - LV on the
right side and RV on the left side), and (iv) ascertained that none of them meet
the exclusion criteria.
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The 3D echocardiographic recordings were analyzed by expert readers on
desktop computers using a commercially available software solution (4D RV-
Function 2, TomTec Imaging, Unterschleissheim, Germany) to compute RV end-
diastolic and end-systolic volumes, as well as RVEF. These parameters were
calculated only once for each echocardiographic examination. However, an ex-
amination may contain multiple 2D apical four-chamber view videos; thus, the
same label was linked to all 2D videos within that given examination.

A comprehensive list and description of the generated labels are provided in
Table 1.

Variable Description

FileName Hashed file name used to link videos and labels
PatientHash Hashed patient name
PatientGroup Patient subgroup referring to the primary diagnosis
Age Age in years, rounded to nearest year
Sex Sex reported in medical record (M - male, F - female)
UltrasoundSystem Ultrasound system used for video acquisition
FPS Frames per second (1/s)
NumFrames Number of frames in the whole video
VideoViewType Standard or RV-focused apical four-chamber view
VideoOrientation LV/RV orientation (Mayo or Stanford)

VideoQuality
2D video quality on a 5-point scale (1 - non-diagnostic, 2 -
poor, 3 - moderate, 4 - good, 5 - excellent)

RVEDV 3D echocardiography-derived RV end-diastolic volume (mL)
RVESV 3D echocardiography-derived RV end-systolic volume (mL)
RVEF 3D echocardiography-derived RV ejection fraction (%)
Split Train-test splitting used for benchmarking

Table 1: Description of the labels. RV - right ventricular

3.3 Composition of the Dataset

The RVENet dataset contains 3,583 2D apical four-chamber view echocardio-
graphic videos from 944 transthoracic echocardiographic examinations of 831
individuals. It comprises ten distinct subgroups of subjects: (i) healthy adult
volunteers (without history and risk factors of cardiovascular diseases, n=192),
(ii) healthy pediatric volunteers (n=54), (iii) elite, competitive athletes (n=139),
(iv) patients with heart failure and reduced EF (n=98), (v) patients with LV
non-compaction cardiomyopathy (n=27), (vi) patients with aortic valve disease
(n=85), (vii) patients with mitral valve disease (n=70), (viii) patients who un-
derwent orthotopic heart transplantation (n=87), (ix) pediatric patients who
underwent kidney transplantation (n=23), and (x) others (n=56). Beyond the
primary diagnosis and the labels mentioned in section 3.2, we also provided the
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age (rounded to the nearest year) and the biological sex (as reported in medical
records) for each patient, and train-test splitting (80:20 ratio) that we used for
the training and the evaluation of the benchmark models (see section 4). In ad-
dition, the ultrasound system utilized for video acquisition, the frame rate (i.e.,
FPS), and the total number of frames are also reported for each video among
the labels.

3.4 Data De-identification and Access

Before publication of the RVENet dataset, all DICOM files were processed to
remove any protected health information. We also ensured that no protected
health information is included among the published labels. Thus, the RVENet
dataset complies with the General Data Protection Regulation of the European
Union. The dataset with the corresponding labels is available at
https://rvenet.github.io/dataset/.

The RVENet dataset is available only for personal, non-commercial research
purposes. Any commercial use, sale, or other monetization is prohibited. Re-
identification of individuals is strictly prohibited. The RVENet dataset can be
used only for legal purposes.

4 Benchmark Models

4.1 Methodology

Ethical Approval The study conforms to the principles outlined in the Dec-
laration of Helsinki, and it was approved by the Semmelweis University Re-
gional and Institutional Committee of Science and Research Ethics (approval No.
190/2020). Methods and results are reported in compliance with the Proposed
Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation
(PRIME) checklist (Supplementary Table 3) [17].

Data Preprocessing The RVENet dataset can be used for various purposes
within the realm of cardiovascular research. In this section, we describe data
preprocessing that proceeded both deep learning tasks, namely (i) the prediction
of the exact RVEF values (i.e. regression task) and (ii) and the classification of
reduced/normal RVEF (i.e. binary classification task).

All echocardiographic recordings were exported as DICOM files. Each DI-
COM file contains a series of frames depicting one or more cardiac cycles. This
arrangement of the data had to be modified to achieve a representation that is
more suitable for neural networks. The three main steps of preprocessing can
be described as follows: (1) frame selection, (2) image data preparation, and (3)
handling imbalance in the train set.

Frame selection refers to the preprocessing step in which 20 frames are se-
lected to represent a cardiac cycle (20 frames per cardiac cycle proved to be
the appropriate number in [14] for left ventricle EF prediction). Recordings may
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contain multiple cardiac cycles and may differ in length and frame rate (FPS -
frames per second). We applied the following formula to estimate the length of a
cardiac cycle (L) based on heart rate (HR) and FPS extracted from the DICOM
file tags:

L =
60

HR
∗ FPS

Since all the recordings are ECG-gated and start with the end-diastolic frame,
the split of the videos into consecutive, non-overlapping fragments (depicting
exactly one cardiac cycle) was feasible. Fragments containing less than L frames
were excluded. Then, a predefined number of frames (N = 20) were sampled
from the fragments based on the sampling frequency (SF) which was calculated
using the following formula:

SF =
L

N

A subset of randomly selected videos underwent a manual verification process
by an experienced physician to evaluate the cardiac cycle selection.

The next step is the image data generation which is shown in Figure 2. The
selected frames contain multiple components that are unnecessary for the neural
network training, such as ECG signal, color-scale and other signals and texts.
These unwanted items were removed using motion-based filtering. Our algorithm
tracks the changes frame by frame and set the pixels to black if they change fewer
times than a predefined threshold (in our case 10). We also cropped the relevant
region of the recordings and generate a binary mask for training.

Fig. 2: Schematic illustration of the preprocessing. First, static objects (e.g.,
technical markers and the ECG signal) were removed from the area marked
by red diagonal lines using motion-based filtering, while the region of interest
(enclosed by the white contour) was left intact. Second, the region of interest
was cropped from the filtered image and a binary mask was also generated.

The removal of unwanted components is performed along with the binary
mask generation. This mask is created for every video fragment with the consid-
eration of all the frames. The aim of this additional binary image is to prevent
the network from extracting features from the outside of the region of interest.
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The closest enclosing rectangle is applied to both the preprocessed frames
and the binary image. After that they are resized to 224x224 pixels. Previously,
Madani et al. examined the effect of the input image size on the system’s accuracy
in a echocardiography view classification task , and they found out that the
accuracy saturated if they used higher resolution than this [9].

Train-Test Splitting The dataset was split in an approximately 80:20 ratio
into train and test sets. Splitting was performed at the patient level to avoid
data leakage (i.e., we assigned all videos of a given patient either to the train or
the test set).

Dataset Balancing An optional step in pre-processing is the dataset balanc-
ing which aims to compensate the high imbalance between negative (normal EF)
and positive (reduced EF) cases. In binary classification this means the oversam-
pling of the positive cases and the undersampling of negative cases. In case of
a regression problem, the EF values are assigned to discrete bins, and the algo-
rithm aims to balance the number of samples in these bins. The method takes
the number of videos and heart cycles from a certain patient into account. It
aims to keep at least one video from every patient in the undersampling phase,
and oversamples the videos from patients with reduced EF uniformly.

Spatiotemporal Convolutional Neural Networks As it was mentioned in
the Related Work section, spatiotemporal processing of the echocardiographic
videos provide a more accurate approach for EF prediction [4, 14].

Based on these results, we used two neural network models. The first one is
composed of R(2+1)D spatiotemporal convolutional blocks [20], and a PyTorch
implementation (called R2Plus1D 18) of such a model is available off-the-shelf.
We refer to this model as ”R2+1D” in the text. We also designed a more ef-
ficient, single stage neural network called EFNet (Ejection Fraction Network)
that consist of a feature extractor backbone (ShuffleNet V2 [8] or ResNext50
[21]) a temporal merging layer and two fully connected layers. The architecture
of our custom model is visualized in (Figure 3).

Both networks predict the RVEF directly from an input image sequence
(and the corresponding binary mask). The same architectures can be used for
classification or regression by changing the number of outputs.

Model training and evaluation Several experiments were performed to find
the best training parameters. In the followings, the final parameter sets are
introduced.

The backbone model of the EFNet was ShuffleNet V2 [8] for binary classifi-
cation and ResNext50 [23] for regression, which is a more challenging task and
therefore needs a more complex architecture. To distinguish these two versions of
EFNet, we refer to the classification model as EFNet class and to the regression
model as EFNet reg.
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Fig. 3: The training batch contains batch size × video frames images with resolu-
tion of 224x224 pixels. The feature extractor is a ShuffleNet V2 [8] or a ResNext50
[23] model. The dimension transformation layer groups the frame features cor-
responding to the videos in the batch, then these group of frames are processed
using the spatiotemporal convolutional layer to extract dynamic features. The
final features are downscaled using fully connected layers and forwarded to either
a classification or a regression head.

ImageNet pre-trained weights can improve the performance of deep learning
models applied in medical datasets [19]. In our case, only the EFNet reg model
was initialized using ImageNet pre-trained weights, the weights of the R2+1D
and EFNet reg models were initialized randomly.

As it was described in 4.1, the videos were split into distinct cardiac cycles,
and 20 frames were sampled from each of them.

Dataset balancing (described above) also improved the accuracy of the sys-
tem as well as the F1 and R2 scores. This is mainly due the substantial imbalance
in the dataset.

Augmentation techniques were also applied, namely vertical flipping and ro-
tation (+/- 10°). Normalization was not applied.

The models were trained for maximum 30 epochs with a batch size of 4. We
used Adam optimizer (initial learning rate = 0.003, momentum = 0.9), and the
PyTorch cyclic learning rate scheduler (lambda=0.965).

Cross-entropy loss was used in the classification experiments, and MAE in
the regression experiments.

The parameter search and model selection was done applying a four fold cross
validation using the whole training set. For the final experiments, the training set
was split in 75%-25% ratio into training and validation set. A balanced version
of the training set was used for training, and the best model was selected using
the validation set results based on f1 score in case of classification and R2 in
case of regression training.

For both the classification and regression tasks, the deep learning models
were evaluated on the test set. As a classification model predicts a class for a
single cardiac cycle, these predictions were averaged for each video (taking the
majority vote). This way the results can be compared with the human experts’
performance as they also saw the whole video during evaluation. In the regression
task, the models’ prediction were averaged for each test video similarly to the
classification task. In this case no human expert comparison was performed as
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the exact prediction of the RVEF value is not part of the clinical evaluation of
2D echocardiographic recordings (it is done only using 3D recordings).

Human Expert Evaluation Videos of the test set were evaluated by two ex-
pert cardiologists: one from the same center where the echocardiographic videos
were acquired (referred to as ExpertInternal) and one from an external center (re-
ferred to as ExpertExternal). Although patient identification information, medi-
cal history, and diagnosis were hidden from both of them during evaluation, the
first cardiologist might have seen some of the videos previously, as he performs
echocardiographic examinations at a daily basis. On the other hand, the second
cardiologist has not seen any of the videos previously, enabling a completely
unbiased comparison.

Both evaluator used the same custom desktop application for evaluation,
which displayed the original videos one by one in a random order and the evalu-
ating expert had to decide based on visual estimation whether the video belongs
to patient with normal (RVEF is equal or greater than 45) or reduced (RVEF is
less than 45) RV function.

4.2 Results

Table 2 shows the results of the deep learning models and the human experts
in the detection of RV dysfunction (i.e., binary classification task). Both deep
learning models achieved a numerically higher accuracy, specificity, sensitivity,
and F1 score than the medical experts. We also confirmed these differences
using McNemar’s tests. EFNet class model exhibited an accuracy, specificity,
and sensitivity comparable to those of the internal expert, whereas it had higher
accuracy and sensitivity than the external expert (Table 3). The R2+1D model
achieved a higher sensitivity than the internal expert, and it also outperformed
the external expert in terms of accuracy and sensitivity (Table 3).

Accuracy Specificity Sensitivity F1 score

EFNet class 0.911 0.942 0.688 0.655
R2+1D 0.920 0.940 0.775 0.705
ExpertInternal 0.897 0.940 0.588 0.584
ExpertExternal 0.859 0.923 0.400 0.410

Table 2: Performance of the deep learning models and the cardiologists in the
binary classification task.

In the regression task (i.e. prediction of the exact RVEF value), the two deep
learning models performed similarly (Supplementary Figure 1). The EFNet reg
model predicted RVEF with an R2 of 0.411, a mean absolute error of 5.442 per-
centage points, and a mean squared error of 47.845 percentage points2, whereas
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Accuracy Specificity Sensitivity

EFNet class vs. ExpertInternal 0.362 1.000 0.170
EFNet class vs. ExpertExternal 0.001 0.229 <0.001
R2+1D vs. ExpertInternal 0.106 1.000 0.004
R2+1D vs. ExpertExternal <0.001 0.275 <0.001

Table 3: P-values of the McNemar’s tests comparing the accuracy, specificity,
and sensitivity of the deep models with those of the cardiologists in the binary
classification task.

the R2+1D model achieved an R2 of 0.417, a mean absolute error of 5.374 per-
centage points, and a mean squared error of 47.377 percentage points2.

The Bland-Altman analysis showed a significant bias between the deep learning-
predicted and the 3D echocardiography-based ground truth RVEF values
(EFNet reg: -2.496 percentage points, p<0.001; R2+1D: 0.803 percentage points,
p<0.001; Supplementary Figure 1).

Table 4 shows the comparison of the R2+1D and the two EFNet models in
terms of size, and inference speed. Even if the R2+1D model performed better
in the classification task and slightly better in the regression task, EFNet is a
more efficient model, and its speed can be a huge advantage in model training
and inference both in experimentation and in clinical applications.

Feature
extractor

Inference time
[ms]

Model size
[MB]

EFNet class ShuffleNet V2 16 61
EFNet reg ResNext50 31 177
R2+1D R(2+1)D 53 119

Table 4: Size and inference speed results of the baseline models. Inference speed
was measured by averaging 100 iterations with batch size of 1 on an Nvidia V100
GPU.

5 Discussion

5.1 Potential Clinical Application

RV dysfunction is significantly and independently associated with symptoma-
tology and clinical outcomes (e.g. all-cause mortality and/or adverse cardiopul-
monary outcomes) in different cardiopulmonary diseases irrespective of which
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side of the heart is primarily affected. Among echocardiographic parameters,
3D echocardiography-derived quantification of RVEF provides the highest pre-
dictive value for future adverse events [16]. However, there are several issues
that prevent RVEF to be a standard measure in the daily clinical routine.
3D echocardiography-based quantification of RVEF requires advanced hardware
and software environment along with experienced cardiology specialists. First,
a high-end ultrasound system equipped with a 3D-capable matrix transducer is
required. Compared to a conventional acquisition of an apical four-chamber view
video (included in the routine protocols and takes no more than one minute ir-
respective of the level of expertise), an RV-focused, modified four-chamber view
is needed with the 3D option enabled. The investigator needs to ensure the
capture of the entire RV endocardial surface, which can be troublesome with
distinct anatomical features of the patient. Moreover, to enable higher temporal
resolution, multi-beat reconstruction should be used that can be limited in the
cases of irregular heart rhythm, transducer motion, in patients who are not able
to breathe-hold, and again, user experience is of significant importance to ac-
quire a high-quality 3D dataset free of artifacts. To acquire such a measurement
feasible for RVEF measurement takes about 2 to 4 minutes for an expert user,
which can go up to 5-8 minutes for users not having extensive experience in
3D image acquisition. Then, the 3D DICOM file should be post-processed using
standalone software (running on a separate PC or embedded in the high-end
ultrasound machine). One vendor enables fully automatic 3D reconstruction of
the RV endocardial surface and calculation of RVEF values (which takes about
30 seconds). However, in the vast majority of the cases (over 90%), correction
of endocardial contours is needed in multiple long- and short-axis views both at
the end-diastolic and end-systolic frames. Changes in the automatically traced
contours made by the human reader can result in notable interobserver and even
intraobserver variability. Here again, the experience of the user is a major factor
in terms of accurate measurements and also, analysis time. For an experienced
reader, the manual correction of the initial contours takes about 4 to 10 minutes
and up to 15 minutes for an inexperienced user. Overall, from image acquisition
through image transfer, preprocessing and finally RVEF calculation, the entire
process is generally taking 10 to 25 minutes in clinical practice for this single
parameter.

Due to significant human and also hardware/software resources needed, RVEF
calculation by echocardiography is rarely performed in the clinical routine de-
spite its clear value. This can be circumvented by an automated system, which
utilizes routinely acquired echocardiographic videos and does not require a high-
end ultrasound system or significant human experience either. In the clinical
routine, echocardiography is often performed by other medical disciplines (i.e.
emergency physicians, cardiac surgeons) with mobile, even handheld machines
to answer focused yet important clinical questions (so-called point-of-care ul-
trasound examinations). These medical professionals generally do not have any
experience with 3D echocardiography and either high-end ultrasound equipment.
However, in these disciplines, the detection of RV dysfunction is a critical clin-
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ical issue. As it may be applied even to handheld devices and allow the fast
detection of RV dysfunction using simple, routine 2D echocardiographic videos,
our system could be of high clinical interest. It can run in a cloud environment,
and provide results within a few seconds. Also, its use does not require deep
technical knowledge.

5.2 Summary

In this paper, we presented a large dataset for the deep learning-based assessment
of RV function. We made publicly available 3,583 two-dimensional echocardio-
graphic apical four-chamber view videos from 831 patients to researchers and
medical experts. These videos are labelled with RVEF values (the single best
echocardiographic parameter for RV function quantification) derived from 3D
echocardiography. We also introduced benchmark models, which were able to
outperform an external expert human reader in terms of accuracy and sensi-
tivity to detect RV dysfunction. We foresee further performance improvement
through collaborations, definition of RV-related specific clinical tasks, addition
of further echocardiographic views or imaging modalities. Our current database
and model development may serve as a reference point to foster such innovations.
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